


1 INTRODUCTION 

Shear wave velocity (VS) is an important property of 

geomaterials and is widely used to evaluate the dy-

namic and elastic properties of soils in geotechnical 

design. VS measurements provide the fundamental 

stiffness of the ground in terms of the small-strain 

shear modulus (Go), specifically: Go = ρVS
2, where ρ 

= t/ga = soil total mass density, t = soil total unit 

weight, and ga = gravitational acceleration constant.  
VS measurements can be obtained using a variety 

of test methods. The value of VS can be measured in 
the laboratory using high quality undisturbed samples 
and special equipment (resonant column, bender ele-
ments), which is costly and restricted to a limited 
number of samples. In-situ measurements of VS are 
preferable to preserve site-specific conditions and 
minimize errors due to sampling disturbance and 
stress release.  

In-situ measurements of VS can be obtained 
through downhole and crosshole tests, seismic piezo-
cone tests (SCPTu), spectral analysis of surface 
waves (SASW), and multichannel analysis of surface 
waves (MASW). SCPTu method is often preferred as 
it is a rapid and cost-effective technique to measure 
in-situ wave velocities in conjunction with CPTu pa-
rameters, including cone tip resistance (qt), sleeve 
friction (fs), and dynamic porewater pressure (u2) in a 
single direct push sounding.  

Although performing site-specific testing is the 
preferred method to determine shear wave velocity, 
several empirical relationships have been developed 
to estimate VS from the basic CPTu for lower risk pro-

jects. When actual measurements of VS are not prac-
tical, estimates can still provide useful additional in-
formation. Existing empirical CPT relationships for 
VS have been developed using statistical approaches. 
This paper explores the use of a data-driven approach 
via machine learning modelling to predict VS from 
CPTu. Machine learning requires little or no priori as-
sumptions to be considered and thus are more flexible 
than statistical models.  

The development dataset used in this study is com-
prised of VS-CPTu data pairs from ConeTec SCPTu 
soundings collected from 2017 to early 2021. The 
soundings have been completed in a wide variety of 
soil types with various stress histories and are from 
geological environments around the world. The da-
taset is tested with a random forest algorithm to de-
velop a model for the prediction of VS from CPTu 
data. The results of the machine learning models are 
compared to empirical equations proposed by Mayne 
(2006) and Robertson (2009). Furthermore, the im-
pacts of soil microstructure and cementation on esti-
mated VS results are discussed and separate models 
are developed for the categories of uncemented and 
cemented soils. 

2 BACKGROUND 

2.1 Seismic Piezocone Tests (SCPTu) 

The SCPTu is similar to the CPTu probe with the ad-

dition of one or more geophones or accelerometers 

located behind the cone tip. As shown in Figure 1, the 

equipment required to perform SCPTu includes the 

seismic source on the ground surface, seismic sensors 
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Figure 1. Schematic of seismic CPTu equipment.  

 

behind the cone probe, a data-acquisition system, and 
a data recording trigger circuit (Styler et al. 2016).  

The seismic testing is conducted at selected depth 
intervals (typically every 1m), while the penetrometer 
is pushed into the ground. The shear waves are gen-
erated by striking a horizontal beam pressed firmly 
against the ground. Paired left- and right-strikes are 
used to define either the first arrival time of shear 
waves, or first crossover, or both. VS is calculated us-
ing the difference in arrival times of the shear wave 
traces between the source and geophone at two suc-
cessive depths. The SCPTu has several advantages in-
cluding correlated VS and CPTu results, the capability 
to do deep tests, the ability to measure compression 
wave velocity (VP), and availability of soil property 
interpretations based on small-strain rigidity index (IG 
= Go/qnet, where qnet is cone net tip resistance). 

2.2 Existing CPT relationships 

Relationships between CPT data and VS have been 
studied previously by various researchers. Hegazy & 
Mayne (1995) developed various expressions to esti-
mate VS using parameters including tip resistance 
(qc), sleeve friction (fs), vertical effective stress (σ’vo), 
and in-situ void ratio (e) for Quaternary clays, sands, 
and mixed soils. Various relationships have also been 
proposed by Piratheepan (2002) for the estimation of 
VS based on tip resistance (qc), sleeve friction (fs), 
vertical effective stress (σ’vo), depth (z), and soil be-
haviour type index (Ic) for Holocene clays, sands, and 
other soils. Mayne (2006) showed a relationship 
where the VS is a function of the sleeve friction (fs) 
for Quaternary soils. Another correlation developed 
by Andrus et al. (2007) for Holocene and Pleistocene 
soils is based on tip resistance (qt), depth (z), soil be-
haviour type index (Ic), and a time factor depending 
on the soil age. Robertson (2009) also developed a 
generalized soil relationship where VS is a function of 
net tip resistance (qnet = qt - vo), total vertical stress 
(σvo), atmospheric pressure (σatm), and soil behaviour 

type index (Ic). An overview on some of the CPT re-
lationships to predict VS has been provided in Wair et 
al. (2012). 

In this study, the estimated VS results from the ma-
chine learning models are compared to the results ob-
tained by the empirical expressions proposed by 
Mayne (2006) and Robertson (2009), shown in Equa-
tions 1 and 2, respectively: 

 
𝑉𝑠 = 118.8 log(𝑓𝑠) + 18.5 
 

(1) 

𝑉𝑠 = [(100.55𝐼𝑐+1.68)(𝑞𝑡 − 𝜎𝑣𝑜)/𝜎𝑎𝑡𝑚]
0.5 (2) 

 
where VS is in m/s in both equations, fs is in kPa in 
Eq. 1, and atm is in same units as qt and vo in Eq. 2. 

2.3 Impact of soil microstructure 

The existing empirical correlations developed for in-
terpretation of CPT results have been generally devel-
oped using silica-based uncemented soils with little 
or no microstructure (Robertson 2016). Therefore, 
caution should be exercised when CPT based rela-
tionships are used in soils with microstructure. Ac-
cording to Robertson (2016), the empirical parameter, 
K*

G, can be used to determine whether soils are ce-
mented or not. K*

G is calculated as (Go/qnet)(Qtn)
0.75 

(Robertson 2016), where Qtn is the normalized tip re-
sistance. Soils with K*

G of less than 330 are likely 
young and uncemented with little or no microstruc-
ture, while soils with K*

G of greater than 330 can be 
classified as cemented and microstructured soils.  

The cemented versus uncemented soils are consid-
ered in this study for the evaluation of the perfor-
mance of the machine learning model. Furthermore, 
individual models are developed specifically for 
uncemented and cemented soils. 

3 DESCRIPTION OF DATASET 

To investigate the potential of a data-driven approach 
to estimate VS from CPTu data, a dataset of paired 
VS-CPTu data was compiled using ConeTec’s geo-
spatial database. The database was queried to find the 
relevant information that resulted in 14,855 SCPTu 
tests worldwide with more than 248,500 VS-CPTu 
data pairs. For this study, soundings collected after 
2016 were selected in order to only utilize modern 
tests with increased quality control. Procedural 
changes in ConeTec’s SCPTu methodology yielded 
slightly higher accuracy in VS measurements due to 
signal enhancement and signal stacking after this date 
(Styler & Weemees 2016).  Consequently, the da-
taset was reduced to 104,809 VS-CPTu data pairs 
from 7171 independent SCPTu soundings worldwide. 
Most of the soundings are from North America, with 
additional contributions from various sites in South 
America, Australia, Europe, and Asia. To pair the 
CPTu parameters with VS measurements at a given 



depth, the median of CPTu parameters over a window 
size equal to the VS depth interval was calculated. 
Only depth intervals equal to or less than 1 m were 
considered to minimize variations due to potential 
soil heterogeneity. The CPTu parameters paired with 
VS included corrected tip resistance (qt), sleeve fric-
tion (fs), porewater pressure (u2) and depth (z) at each 
VS measurement. Additional parameters including 
normalized tip resistance (Qtn), normalized friction 
ratio (Fr), normalized porewater pressure (Bq), net tip 
resistance (qnet), total stress (σvo), and effective stress 
(σ’vo) as well as small-strain shear modulus (Go), 
small-strain rigidity index (IG), and K*

G were also cal-
culated.  
 Calculation of a number of these parameters re-
quired the soil unit weight (γ). The machine learning 
model based on corrected tip resistance (qt), sleeve 
friction (fs), porewater pressure (u2) and depth (z) de-
veloped by Entezari et al. (2021) was used to estimate 
unit weight at each depth. The measured equilibrium 
pore pressure profile of each SCPTu sounding, com-
bined with the estimated unit weight profile, was used 
to determine in-situ vertical stresses.   
 Data points with net tip resistance (qnet) of less than 
100 kPa were screened out to remove fluid-like tail-
ings from the dataset. Also, data points with sleeve 
friction (fs) of less than 1 kPa were screened out in 
order to remove data where the soil-sleeve friction 
was less than internal o-ring friction. The final dataset 
used included 104,054 VS-CPTu data pairs. Table 1 
lists the summary statistics of the paired dataset. 

 
Table 1.  Summary statistics of the VS-CPTu dataset. 

 Min Max Mean 

VS (m/s) 9 1000 251 

qt (MPa) 0.1 94.1 8.4 

fs (kPa) 1.0 1577 117.6 

u2 (kPa) -87.2 5489 245.0 

z (m) 0.3 129.6 17.3 

σ’vo (kPa) 0.1 2185 215.4 

Total number of data pairs = 104,054. 

3.1 Soils with microstructure 

The plot of normalized tip resistance (Qtn) versus 
small-strain rigidity index (IG) for the dataset is 
shown in Figure 2. Accordingly, 63,740 data points 
fall in the young and uncemented soils category (soils 
with little or no microstructure), where K*

G is less 
than 330 (green points in Fig. 2). Another 40,314 data 
points fall in the cemented soils category (soils with 
microstructure), where K*

G is greater than 330 (blue 
points in Fig. 2).  

3.2 Training and test datasets 

The dataset was split into training and test sets. The 
training set was used to calibrate the model whereas 
the test set was used to evaluate the model perfor-
mance. The data collected from 2017 to 2019 was 

used as the training set and data collected in 2020 and 
early 2021 provided the test set. This allows for an 
unbiased performance evaluation of the model (a 
blind test) where the potential errors due to variation 
in stress histories and geological environments are 
taken into account. The number of paired VS-CPTu 
data points for the training and test sets are listed in 
Table 2.   

 
 

Figure 2. The dataset plotted in the Qtn-IG chart. 

 

Table 2.  Number of data pairs in the training and 
test sets. 

 All Uncemented Cemented 

Training set 73,010 45,386 27,624 

Test set 31,044 18,354 12,690 

4 MACHINE LEARNING MODELLING 

Machine learning models acquire information from 
prior data, allowing the computers to discover predic-
tive rules applicable for future data. Machine learning 
models are generally data-hungry and need large da-
tasets for training. In general, as more data become 
available, the more accurate and robust the predic-
tions become. Machine learning is widely used in nu-
merous disciplines and has gained interest in geotech-
nical engineering. Example applications of machine 
learning for CPT interpretations can be found in Erzin 
& Ecemis (2016), Reale et al. (2018), Wang et al. 
(2019), Erharter et al. (2021), Rauter & Tschuchnigg 
(2021), and Entezari et al. (2020, 2021).  

In this study, the random forest algorithm 
(Breiman 2001) was employed to calibrate CPTu data 
to VS measurements. It is one of the most widely used 
machine learning algorithms for classification and re-
gression tasks. Random forest is an ensemble of sev-
eral decision trees and thus overcomes the shortcom-
ings of traditional decision trees, predominantly 
overfitting. The models here were trained using four 
input parameters including corrected tip resistance 
(qt), dynamic porewater pressure (u2), sleeve friction 
(fs), and depth (z). 



4.1 Performance evaluation 

The performance of the random forest models is eval-
uated using the properties of the cumulative distribu-
tion function (CDF) of errors on the test set. The error 
is calculated as the discrepancy between the measured 
VS from SCPTu and predicted VS from the random 
forest models. The 50th percentile in the CDF is taken 
as the bias of the prediction. Assuming the errors fol-
low a normal distribution, the CDF values at 15.9% 
and 84.1% correspond to ±1 standard deviation. The 
average of the two CDF values at 15.9% and 84.1% 
is considered as the overall error of the model.  

To compare the performance of the machine learn-
ing models to existing CPTu expressions, similar per-
formance evaluation is performed on the test set using 
the predicted VS obtained from the equations pro-
posed by Mayne (2006) and Robertson (2009). 

5 RESULTS 

5.1 All-soils model 

An all-soil model was developed using the random 
forest model trained with all data points in the training 
set. The relationship between measured VS from 
SCPTu and the estimated VS from the random forest 
model is shown in Figure 3. This relationship is 
shown for the test set. The R2 of the model on the test 
set was observed to be 0.58. The error analysis using 
CDF of errors showed that the bias and error of the 
estimated results are –8.5 and 49.5 m/s, respectively. 
The bias –8.5 m/s means that random forest model 
overestimates the measured VS by 8.5 m/s overall. 
The error of 49.47 m/s means that 68.2% of the esti-
mated VS values fall within ±49.5 m/s of the meas-
ured VS from SCPTu testing.  
 The performance of the model was also assessed on 
uncemented and cemented soils. When only 
uncemented soils were considered in the test set, the 
bias and error of the estimated VS results are –23.4 
and ±34.8 m/s, respectively. For cemented soils, the 
bias and error of the estimated VS were observed to 
be 27.2 and ±62.8 m/s, respectively. 

5.2 Uncemented and cemented soils models 

Using the uncemented and cemented soil categories 
in the training set, two separate models were devel-
oped for the estimation of VS in these types of soils. 
Figure 4 shows the relationship between the SCPTu 
measured and random forest predicted VS for the frac-
tion of the test set in uncemented soils. As can be 
seen, the correlation between estimated and measured 
VS significantly improved compared to the all-soils 
model shown in Figure 3 (R2 of 0.79 compared to 
0.58). The bias and error of the estimated results were 
observed to be 0.6 and 28.2 m/s, respectively. 
 

 
Figure 3. Relationship between measured and random forest 
estimated VS on the test set using all soils.  

 
Evidently, the random forest model is far better 

able to model the relationship between VS and CPTu 
parameters in uncemented soils, compared to the all-
soil scenario.  

The results of the random forest model developed 
for cemented soils are also shown in Figure 4. The 
bias and error were observed to be -12.3 and 54.1 m/s, 
respectively. Compared to the all-soil model, this 
model performs better on cemented soils, but the bias 
and error are still high. This is presumably because 
microstructure can have a variety of impacts on CPTu 
parameters.  Thus, the learnt relationship between VS 
and CPTu parameters in cemented soils of the train-
ing set may not be applicable on the cemented soils 
of the test set.  

5.3 Existing relationships 

Figures 5 shows the relationships between the esti-
mated VS calculated using the methods of Mayne 
(2006) and Robertson (2009) with the measured VS 
using SCPTu on the test set. For the Mayne (2006) 
model, the bias and error were observed to be 12 and 
68.6 m/s, respectively, when error assessment was 
done on all soils. When only uncemented soils were 
considered, the bias and error were dropped to -7.2 
and 52.5 m/s, respectively. The bias and error were 
calculated to be 51.1 and 82.8 m/s, respectively, on 
cemented soils.  
 In case of Robertson (2009) model, the bias and er-
ror were 21.5 and 64.3 m/s, respectively, on all soils 
in the test set. The bias and error were observed to be 
-6.1 and 50.3 m/s, respectively, for uncemented soils, 
compared to 69.2 and 57.8 m/s for cemented soils. 
Overall, it can be seen that these expressions perform 
better on uncemented soils, as expected. A summary 
of model performances is presented in Table 3. It 
should be noted that no limits were applied to the two 
existing methods because the intent was to compare  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Relationships between measured and random forest 

estimated VS of the uncemented (top) and cemented soils 

(bottom) in the test set when separate models were trained 

using uncemented and cemented soils in the training set. 
 
the results to those obtained from the random forest 
models developed using a wide range of soil types. 
Limiting the range of applicable data to be used in the 
existing methods would be prudent and may result in 
a better average correlation and error. 
 
Table 3.  Performance of different models. 

 Bias±Error (m/s) 

Model All Soils Uncemented Cemented 

RF-All Soils -8.5±49.5 -23.4±34.8 27.2±62.8 

RF-Uncemented NA 0.6±28.2 NA 

RF-Cemented NA NA -12.3±54.1 

Mayne (2006) 12.0±68.6 -7.2±52.5 51.1±82.8 

Robertson (2009) 21.5±64.3 -6.1±50.3 69.2±57.8 

5.4 Example SCPTu Vs profile 

An example SCPTu profile of VS estimated using the 
random forest models developed in this study is 
shown in Figure 6. The estimated VS values from the 
expressions of Mayne (2006) and Robertson (2009), 
as  well  as  the  measured  VS  profile,  are  displayed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Relationships between measured vs. estimated VS 

using Mayne (2006) (top) and Robertson (2009) (bottom) 

methods. 
 
along with the results of this study. The SCPTu 
sounding is from 2020 and is thus part of the test set. 
As evident, both all-soils and uncemented models are 
in agreement with the measured VS. The uncemented 
model, however, shows less fluctuations and a better 
performance compared to the all-soils model. Both of 
these models appear to outperform the Mayne (2006) 
and Robertson (2009) models. The analysis of K*

G re-
vealed that the soils are uncemented for the whole 
profile except for depth ranges between 3.5-9 m and 
15-17.5 m.  

6 DISCUSSION 

In practice, a priori information on the soil micro-
structure is required in order to be able to employ soil-
specific models developed in this study to estimate VS 
(uncemented and cemented soils models). Determin-
ing the soils categories based on K*

G is not practical 
without knowing VS. Therefore, information on soil 
categories should be available from other sources 
such as previous SCPTu testing in the region under 
investigation or information on the geology of soils. 



Figure 6. Example profile of Vs estimated from models de-
veloped in this study and existing relationships. 

 
When such information is not available, the results of 
this study showed that the developed all-soils model 
performs better than the Mayne (2006) and Robertson 
(2009) models when CPTu is pushed in regions with 
both cemented and uncemented soils. When a priori 
information on soil categories is available, the soil-
specific models developed in this study could lead to 
better results than the all-soils model and the equa-
tions proposed by Mayne (2006) and Robertson 
(2009).  

In future work, the dataset compiled in this study 
will be used to investigate the potential of machine 
learning algorithms to classify and identify cemented 
and uncemented soils from CPTu parameters. How-
ever, K*

G of 330 as a threshold to distinguish ce-
mented from uncemented soils has been determined 
empirically and may not be an absolute metric. 

In addition to the models developed and presented 
in this paper, random forest models were trained by 
adding normalized tip resistance (Qtn), normalized 
friction ratio (Fr), normalized porewater pressure 
(Bq), and effective stress (σ’vo) to the input variables, 
but no significant improvements were observed.  

7 CONCLUSIONS 

Machine learning models using a random forest algo-
rithm were developed to directly predict VS from 
CPTu data. A dataset of paired VS-CPTu data com-
piled from 7171 SCPTu soundings completed at var-
ious sites with a wide variety of soil types, stress his-
tories, and geological environments was used to 
develop machine learning models. Results showed 
that the all-soils model developed using random for-
est algorithm can estimate VS with ±49.5 m/s error. 
The model developed for uncemented soils showed a 
significant improvement and could predict VS with 
±28.2 m/s error. The model developed for cemented 

soils achieved an accuracy of ±54.1 m/s. All the de-
veloped machine learning models outperformed the 
studied existing relationships from literature. Alt-
hough actual measurement of VS is always preferra-
ble, it appears to be more crucial when dealing with 
soils that have microstructure. The models developed 
are from a very large dataset compiled from SCPTu 
soundings from various geological regions and are 
therefore considered to be robust, however engineer-
ing judgement should always be exercised when us-
ing any empirical statistics or models.  
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